Nonlocal Symmetries, Telescopic Vector Fields and λ-Symmetries of Ordinary Differential Equations
نویسندگان
چکیده
This paper studies relationships between the order reductions of ordinary differential equations derived by the existence of λ-symmetries, telescopic vector fields and some nonlocal symmetries obtained by embedding the equation in an auxiliary system. The results let us connect such nonlocal symmetries with approaches that had been previously introduced: the exponential vector fields and the λ-coverings method. The λ-symmetry approach let us characterize the nonlocal symmetries that are useful to reduce the order and provides an alternative method of computation that involves less unknowns. The notion of equivalent λ-symmetries is used to decide whether or not reductions associated to two nonlocal symmetries are strictly different.
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملλ−Symmetries and linearization of ordinary differential equations through nonlocal transformations ?
A recent study (Muriel and Romero (2010a)) on the linearization of ordinary differential equations through generalized Sundman transformations suggests considering the problem of linearization through nonlocal transformations from the point of view of the λ−symmetries admitted by the equation and their associated first integrals. The systematic methods to calculate λ−symmetries and associated f...
متن کاملNonlocal symmetries of a class of scalar and coupled nonlinear ordinary differential equations of any order
In this paper we devise a systematic procedure to obtain nonlocal symmetries of a class of scalar nonlinear ordinary differential equations (ODEs) of arbitrary order related to linear ODEs through nonlocal relations. The procedure makes use of the Lie point symmetries of the linear ODEs and the nonlocal connection to deduce the nonlocal symmetries of the corresponding nonlinear ODEs. Using thes...
متن کاملNew methods of reduction for ordinary differential equations
We introduce a new class of symmetries, that strictly includes Lie symmetries, for which there exists an algorithm that lets us reduce the order of an ordinary differential equation. Many of the known order-reduction processes, that are not consequence of the existence of Lie symmetries, are a consequence of the invariance of the equation under vector fields of the new class. These vector field...
متن کاملHidden symmetries and nonlocal group generators for ordinary differential
Hidden symmetries of ordinary differential equations (ODEs) are studied with nonlocal group generators. General forms are given for an exponential nonlocal group generator of an ODE that is reduced from a higher-order ODE, which is expressed in canonical variables and which is invariant under a two-parameter Lie group. The nonlocal group generator identifies a type I hidden symmetry. Type II hi...
متن کامل